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Abstract
We have developed semiconductor point contact devices in which nuclear
spins in a nanoscale region are coherently controlled by all-electrical
methods. Different from the standard nuclear-magnetic resonance technique,
the longitudinal magnetization of nuclear spins is directly detected by measuring
resistance, resulting in ultra-sensitive detection of the microscopic quantity
of nuclear spins. All possible coherent oscillations have been successfully
demonstrated between two levels from four nuclear spin states of I = 3/2
nuclei. Quantum information processing is discussed based on two fictitious
qubits of an I = 3/2 system and methods are described for performing
arbitrary logical gates both on one and two qubits. A scheme for quantum
state tomography based on Mz -detection is also proposed. As the starting point
of quantum manipulations, we have experimentally prepared the effective pure
states for the I = 3/2 nuclear spin system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The coherent control of quantum states, e.g., qubit operation, in solid-state systems has attracted
much interest from the viewpoint of developing a scalable quantum computer [1–3]. Among
the many candidates for solid-state qubits, quantum nanostructures based on semiconductor
systems have ideal characteristics for confining a small number of quantities to coherently
control excitons, charge, spin or nuclear spin. All-optical control has been demonstrated for an
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exciton confined in a semiconductor quantum dot [4–6]. Electron charge [7, 8] and/or spin [9]
has been coherently manipulated in a coupled quantum dot, resulting in all-electrical qubit
operation.

On the other hand, nuclear spins have well defined coherent characteristics as evidenced
by nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques.
Quantum information processing using NMR of spin 1/2 nuclei has still been the forerunner
for experimental quantum computation since the pioneering works of Cory et al [10] and
Gershenfeld and Chuang [11] (for reviews, see [12–14] and references therein). Although
there may be a problem with future scalability, seven-qubit operation has been demonstrated
using a special macromolecule [15]. Therefore, it is naturally exciting to extend such coherent
operation of nuclear spins in solid-state systems. An interesting nuclear spin qubit has
been proposed by assuming the manipulation of individual nuclear spins [16, 17], and some
experimental trials have attempted to arrange nuclear spins, i.e. atoms, in semiconductors [18].
However, we will need more time and effort to achieve this ultimate goal.

In experiments, manipulation of nuclear spins has been achieved for a group of nuclear
spins in semiconductor systems. For example, nuclear spins have been polarized using an
optical method based on illumination with circularly polarized light [19, 20]. The circular
polarization results in the generation of spin-polarized electrons and nuclear spins are polarized
via a spin flip–flop process when the spin polarized electrons relax to a spin unpolarized
equilibrium state. Nuclear spin polarization in semiconductors can also be achieved by using
electrical means. Examples are nuclear spin polarization at the edge of a quantum Hall
bar [21, 22] and in a quantum dot in a spin-blockade condition [23]. Electrical polarization
of nuclear spins has also been studied on the fractional quantum Hall system [24–26]. All of
these approaches use a special situation where different electron spin states degenerate each
other. This degeneracy enables us to have flip–flop interaction between electron and nuclear
spins while keeping energy and momentum conservation rules.

In our experiments, we use the fractional quantum Hall regime at a Landau-level filling
factor of ν = 2/3, in which coupling of nuclear spins to conduction electrons is known to
be pronounced [24–26]. Electron–nuclear spin interactions at the degenerate points between
spin polarized and unpolarized ν = 2/3 states are evidenced by a gradual increase in
resistance, i.e. the Rxx value, when the sample is driven by a certain current flow [24].
The gradual resistance enhancement reflects the gradual polarization of nuclear spins. The
unique feature of this interaction in the ν = 2/3 degenerate situation is that the Rxx value is
approximately proportional to the total longitudinal magnetization, Mz , coming from nuclear
spin polarization [25]. Although the mechanism of this proportionality is not clear yet,
this simple relation is helpful in realizing an ultra-high sensitivity detection of nuclear spin
polarization based on resistively detected NMR [27].

The constituent atoms, Ga and As, in our GaAs device have an I = 3/2 nuclear spin
system and the states separate into four. An interesting generalization of the original approach
to using nuclear spin-3/2 for quantum information processing was first suggested by Kessel
and Ermakov [28] and partially realized by Khitrin and Fung [29]. Since then, the NMR
quantum information methods for spin-3/2 systems have further been developed [30–39]
in close analogy to standard NMR quantum information processing with spin-1/2 systems.
The vast majority of the experiments on NMR quantum information processing have been
performed in liquids, liquid crystals, or powders under magic angle spinning conditions. Only
a few NMR quantum information processing experiments with single-crystal solids have been
reported [12, 32, 37]. However, most experiments have been based on the conventional NMR
technique, which reads out Mxy , although Leuenberger et al [38, 39] have taken into account
nuclear spin control in semiconductors.
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Figure 1. Schematic diagram illustrating the main aspects of the semiconductor device used for
coherently controlling nuclear spins in a nanometre-scale region. The structure contains a 20 nm
GaAs quantum well with AlGaAs barrier layers grown on n-GaAs(100) substrate, that functions as
a back-gate to control electron density. A pair of Schottky gates defines the point contact channel,
which is indicated by a white ellipse. The gap between the split Schottky gates is 600 nm. The static
magnetic field B0 is applied perpendicular to the grown surface.

In this paper, we describe a nanometre-scale spin-3/2 device in which nuclear spin
polarization is detected by the resistance value with ultra-high sensitivity. The coherent control
between any two states from four spin levels has been demonstrated for the microscopic
quantity of nuclear spins confined in the GaAs point-contact nanometre regime [27]. The
experimental results clearly demonstrate arbitrary superposition among four spin states, i.e.,
quartit operation, which is equivalent to two-qubit operation. Here, |−3/2〉, |−1/2〉, |1/2〉,
and |3/2〉 of As (or Ga) nuclear spin states can be considered as |11〉, |10〉, |01〉, and |00〉 states
of the fictitious two-qubit system. In addition, we will show the pulse operations necessary for
implementing rotations, Hadamard, and controlled-not (CNOT) gates for the quartit system.
State tomography, which requires the readout of all matrix elements in the density matrix after
the quantum operations, will be discussed in connection with an exchange of matrix elements
and Mz-detection. It is also important to control the populations among the four spin states as
the initialization before quantum operations. We will describe an experimental demonstration
of the preparation of effective pure states in our device in the last part of this paper.

2. Coherent control of nuclear spins in a semiconductor nanodevice

2.1. Point-contact device for nuclear spin manipulation

We fabricated a monolithic semiconductor device integrated with a point contact channel and
an antenna gate for the coherent control of nuclear spins in nanometre scale (see figure 1). The
point contact is a narrow constriction of a two-dimensional electron gas defined by a depletion
region under the split Schottky gates. By controlling the back-gate bias and vertical static
magnetic field B0, the point contact region was set to a ν = 2/3 degenerate situation. This
degeneracy was confirmed using a diagram of Rxx as a function of B0 and electron density [40].
The spin unpolarized and polarized ν = 2/3 states faced each other through a transition region
with a high Rxx value. In this transition region, the degeneracy was realized and a strong
interaction was achieved between electron and nuclear spins as evidenced by a gradual Rxx

enhancement as shown in figure 2. The gradual resistance enhancement reflects nuclear spin
polarization by electron-spin flipping through the contact hyperfine interaction when sufficient
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Figure 2. Rxx enhancement from the dynamic nuclear spin polarization near the transition point
of ν = 2/3. Two-dimensional electrons under the split Schottky gates are not completely depleted
at VSG = −0.2 V and Rxx enhancement is weak in this case. On the other hand, strong Rxx

enhancement is observed for VSG = −0.3 V, where electrons under the split gates are completely
depleted and the point contact channel is well defined. The results clearly support the occurrence of
the local nuclear spin polarization in the point contact region.

current is driven through the system (dynamic nuclear spin polarization). The current density
becomes very high in the constricted region so that nuclear spin polarization occurs only in
the point contact region. The experimental result in figure 2 where no resistance enhancement
appears without depletion under the Schottky gates strongly supports a selective polarization
of nuclear spins in the point contact region.

Furthermore, a gradual increase in the resistance means that the polarization of nuclear
spins in the point contact region can be measured from the resistance between both ends of
the point contact. Actually, the resistance value is approximately proportional to the total
longitudinal magnetization of nuclear spin Mz in our experiments. This is well verified by a
comparison between experimentally observed coherent oscillations, discussed in the following
section, and simulation based on the assumption of �Mz ∝ �Rxx [27].

The antenna gate was integrated in our device as shown in figure 1. Radio-frequency (rf)
current through this antenna resulted in local irradiation of the point contact with rf field. The
nuclear spins in the point contact region were coherently manipulated by this rf field.

2.2. Coherent oscillation among four spin levels

The point contact is defined in the GaAs quantum well in our sample and consists of 69,71Ga and
75As each having total spin I = 3/2. Thus, for each nuclide under static magnetic field B0, four
equally spaced energy states with energy separation of h̄ω0 are formed by the Zeeman effect.
The additional electric quadrupolar interaction shifts by energies �q and −�q for |±3/2〉 and
|±1/2〉 states, respectively. The energy difference between adjacent states is, therefore, shifted
by 2�q from h̄ω0, allowing three possible resonances at h̄ω0 − 2�q , h̄ω0, and h̄ω0 + 2�q as
shown in figure 3(a).

After saturation of the Rxx value, or in other words nuclear spin polarization as the
initialization, pulsed rf current is applied to the antenna gate (see figure 1). This pulse current
produces pulsed rf magnetic field B1 which is proportional to a square root of the input power
to the antenna gate. When the applied radio frequency is in resonance with NMR frequency,
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Figure 3. (a) Schematic energy level diagram of nuclear spin states for I = 3/2 with (right) and
without (left) electric quadrupolar interactions. (b) Coherent oscillations originating from various
transitions between the four spin states observed near the NMR resonance frequency of 75As. The
measurement was performed at B0 = 5.5 T at 0.1 K. �Rxx is colour-plotted. In addition to the
single-quantum transitions (1, 2 and 3), two double-quantum transitions (4 and 5) are clearly visible.
A triple-quantum transition (6) was also observed when the strength of the radiation was increased
by driving greater alternating current through the antenna gate (data not shown). The upper column
shows the NMR spectrum measured at tp = 0.126 ms.

for example ω0 −2�q/h̄, ω0, or ω0 +2�q/h̄, the superposition coherently rotates between two
states, resulting in the oscillatory change in longitudinal magnetization Mz . These oscillations
are finally detected by resistance change �Rxx as shown in figure 3(b). Here, we define
�Rxx as positive when Rxx drops after the rf pulse. The resistance measurement corresponds
to the projection of the probability amplitude of the nuclear spin states in our experiments.
The oscillation at h̄ω0 corresponds to the rotation whose path describes a great circle passing
through localized states |1/2〉 and |−1/2〉 in a geometrical representation of superposition
states of a two-level system (Bloch sphere). Similar clear oscillations were observed for the
states between |3/2〉 and |1/2〉 and between |−1/2〉 and |−3/2〉, corresponding to transitions
1 and 3 in figures 3(a) and (b).

According to energy and angular momentum conservation rules, several transitions are
possible in addition to a single quantum coherence between levels separated by a single
quantum of angular momentum (�m = 1). Two double-quantum coherent oscillations appear
in the four-state system with I = 3/2 between two levels separated by two quanta of angular
momentum (�m = 2) driven by two-photon transitions. Furthermore, triple-quantum coherent
oscillation is possible between two levels separated by �m = 3 driven by three-photon
transitions as shown in figure 3(a). Actually, we can observe additional oscillatory features
(4 and 5 in figure 3(b)) between three single-quantum oscillations, reflecting double-quantum
coherent oscillations, which have resonance rf frequency of ω0 −�q/h̄ and ω0 +�q/h̄.

The period of coherent rotations decreases with increasing B1 and the multiple- (double-
and triple-) quantum coherent oscillations become more visible. The triple-quantum coherent
oscillation was observed at the frequency of h̄ω0 under the large B1 because the energy



S890 Y Hirayama et al

difference between |3/2〉 and |−3/2〉 is equal to 3h̄ω0 regardless of the quadrupolar interaction
(figure 3(a)). Furthermore, most of the observed features are well explained by numerical
simulation using the rotation frame approximation [39, 41], where a linear conversion efficiency
is assumed between �Mz and �Rxx . The simulations can reproduce not only the periods of
all observed oscillations but also the behaviours of off-resonance tails. Their widths for higher
�m are scaled down by the photon number involved and are therefore narrower [27, 41]. Good
agreement between simulations and experiments confirms the validity of our detection scheme
through �Mz ∝ �Rxx , although the mechanism behind this linearity is not clear yet.

Similar coherent oscillations were clearly observed for 69Ga and 71Ga (data not shown) as
well as for 75As. This means that three single-, two double- and one triple-quantum coherences
for one nuclide, 18 in total for the three nuclides, are completely controlled by all-electrical
means. The results in figure 3(b) confirm arbitrary control of superposition between four spin
states, |3/2〉, |1/2〉, |−1/2〉 and |−3/2〉, and this is equivalent to two-qubit operation. We will
discuss basic quantum operations for the I = 3/2 nuclear spin system in section 3.

Apart from the coherent control, the obtained results are interesting as a novel NMR
technique. Based on an estimated volume of the nanoscale point contact region of
approximately 200 × 200 nm2 (area) and 10 nm (thickness), the number of nuclear spins
involved is of the order of ∼108 or less, which is much less than the detection limit of
conventional NMR (1011–1013). The clear NMR signal indicates that very highly sensitive
NMR has been achieved in the point contact device [27, 42]. Furthermore, �Mz is directly
detected by �Rxx so that this NMR is suitable for the systems with I > 1/2, which is again
difficult to effectively detect with the conventional NMR technique. Although the degeneracy
of the different electron spin states at ν = 2/3 is a special situation, the obtained result suggests
the possibility of realizing extremely highly sensitive NMR on a chip by taking advantage of
the coupling between nuclear spins and conduction electrons in solid-state systems.

2.3. Decoherence in nanoscale NMR device

Decoherence is the most important issue for a solid-state qubit, although nuclear spins are
generally expected to have a long decoherence time T2. Here, we estimated T2 by fitting
the single-quantum coherent oscillation between |−1/2〉 and |−3/2〉 of 75As with a damped
oscillation, ∝1−cos(�Rtp) exp(−tp/T2), where�R is the frequency of the coherent oscillation
and tp is the rf pulse duration. A rather small B1 was used to avoid additional effects from the
double-quantum oscillations. Figure 4(a) shows the oscillation without any decoupling process.
T2 becomes around 0.6 ms. Our device allows us to decouple nuclei from the electron, since
electrons in the point-contact region can be depleted during the manipulation of nuclei with the
rf pulse. This is achieved by applying a larger negative voltage to the split gates. The resonance
frequency shifts by about 9 kHz due to the Knight shift [43]. Figure 4(b) shows the coherent
oscillation obtained with this electron–nuclear spin decoupling. T2 is found to be enhanced to
1.5 ms.

We extracted decoherence rates, 1/T2, to which individual mechanisms contribute, from
the set of decoupling experiments [43]. The obtained results reveal that electron mediated As–
Ga coupling and direct dipole coupling of As–As play an important role in the dephasing.
On the other hand, the heteronuclear direct dipole coupling (As–Ga) only makes a small
contribution to the decoherence, which seems counterintuitive because As and Ga are located
as nearest neighbours to each other (with distance of 0.433a, where a = 0.565 nm is the lattice
constant of GaAs). This feature may be explained by a zinc-blende lattice structure of the
GaAs crystal. The dipole coupling is proportional to |r|−3(3 cos2 θ − 1), where r is the vector
between two nuclei and θ represents the angle between r and vector B0 [44]. Our structure
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Figure 4. Coherent oscillations between |−1/2〉 and |−3/2〉 with and without electron–nuclear
spin decoupling. (a) Without any decoupling. (b) With electron–nuclear spin decoupling by the
depletion of the point contact region with more negative VSG.

was fabricated from a heterostructure grown on the (100) surface and the B0 was perpendicular
to the layer structures so that, for all nearest As and Ga bonds, θ becomes 54.7347◦, which
satisfies 3 cos2 θ − 1 = 0 (i.e., the magic angle). When the conductive electrons are not
depleted, the As–Ga coupling makes a strong contribution because As and Ga nuclei can couple
with the shortest distance via conduction electrons. The obtained results support the possibility
of manipulating the coupling between Ga and As by controlling the electron density via the gate
bias. We may be able to connect nuclear spins separated in different positions with conductive
electrons for future qubit devices based on nuclear spins.

3. Quantum gate operations for nanoscale NMR devices

3.1. Quantum information processing with a quartit

A quadrupolar spin-3/2 nucleus is a four-level system, which is known as a quartit in the
quantum information context and formally equivalent to two qubits. This can be seen by
identifying all the quartit states with the states of two logical (fictitious) qubits (say A and
B), as in the following examples:

|0〉 ≡ |00〉 ≡ |0〉A|0〉B ≡ |3/2〉,
|1〉 ≡ |01〉 ≡ |0〉A|1〉B ≡ |1/2〉,
|2〉 ≡ |10〉 ≡ |1〉A|0〉B ≡ |−1/2〉,
|3〉 ≡ |11〉 ≡ |1〉A|1〉B ≡ |−3/2〉.

(1)

Thus, any two-qubit input state can be written as a quartit state:

|ψ〉 = c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉 ≡ [c0, c1, c2, c3]T, (2)

where the complex amplitudes ci are normalized to unity.
One of the fundamental theorems of quantum information says that a set of gates composed

of single-qubit rotations and CNOT is universal for quantum computation, i.e., arbitrary unitary
operations can be performed on any number of qubits [45]. However, the question is whether
these gates can be realized not on real qubits but on fictitious qubits in a quartit using the NMR
schemes: in particular, whether one can selectively rotate logical qubit A without rotating
logical qubit B and vice versa.
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Here, we describe methods for performing logic gates using nuclei with spin 3/2 applicable
for our solid-state device [27]. Various two-qubit methods for quantum state engineering and
quantum information processing have already been tested experimentally in spin-3/2 NMR
systems, including demonstrations of (a) classical [29, 30] and quantum [32, 33, 37] logical
gates, (b) the generation of Bell states [32, 33], (c) Grover’s search algorithm [31, 37, 39],
(d) quantum state [35] and process [37] tomography schemes, (f) the Deutsch–Jozsa
algorithm [34, 37], and (g) quantum Fourier transformation [37]. It should be stressed that
many of the above algorithms have been realized only in liquid-state NMR or have only been
partially experimentally tested.

3.2. Single logical qubit gates in a quartit

Any single-qubit (spin-1/2) unitary gate can be described by

Û = eiα R̂n(θ), (3)

where R̂n(θ) is a rotation in the Bloch sphere over an angle θ about the axis n = (nx , ny, nz)

and can be given by

R̂n(θ) ≡ exp

(
− iθ

2
n · σ̂

)
= σ̂I cos

θ

2
− i(nx σ̂x + ny σ̂y + nz σ̂z) sin

θ

2
, (4)

in terms of the Pauli matrices σ̂ = (σ̂x , σ̂y, σ̂z) and identity operator σ̂I . In special cases,
rotations about the axes k = x, y, z are simply described by

X̂(θ) =
[

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

]
,

Ŷ (θ) =
[

cos θ2 −sin θ2
sin θ

2 cos θ2

]
,

Ẑ(θ) =
[

e−iθ/2 0
0 eiθ/2

]
,

(5)

where R̂x,y,z(θ) are denoted by X̂(θ), Ŷ (θ), Ẑ(θ), respectively. Single real qubit rotations
can be directly achieved by NMR techniques (see, e.g., [41] or any review on NMR quantum
computation, e.g., [14]).

Selective rotations in a quartit can be realized by applying transition selective rf pulses at
the resonant frequency between two energy levels, say |m〉 and |n〉. The relations in (5) can be
readily generalized to 4×4 matrices X̂nm(θ), Ŷnm(θ), and Ẑnm(θ) describing the corresponding
rotations between levels |m〉 and |n〉, while leaving the other levels unchanged.

Rotations of logical qubit B in a quartit over an angle θ about axes x, y, z can be realized
by applying rf θ -pulses at frequencies ω0 − 2�q/h̄ and ω0 + 2�q/h̄, i.e.:

X̂ B (θ) = X̂01(θ)X̂23(θ),

Ŷ B(θ) = Ŷ01(θ)Ŷ23(θ),

Ẑ B(θ) = Ẑ01(θ)Ẑ23(θ).

(6)

Here, we use a notation where the pulses are applied from the right to the left, which
is the opposite order to that represented in standard graphical schemes. Note that the pulses
can be applied simultaneously or sequentially in arbitrary order if the corresponding operators
commute (as in (6)). Analogously, rotations of logical qubit A in a quartit can be obtained
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by applying rf pulsing at frequencies ω0 − �q/h̄ and ω0 + �q/h̄ to induce the two-photon
transitions (double-quantum transitions) as follows:

X̂ A(θ) = X̂02(θ)X̂13(θ),

Ŷ A(θ) = Ŷ02(θ)Ŷ13(θ),

Ẑ A(θ) = Ẑ02(θ)Ẑ13(θ).

(7)

Rotations of logical qubit A can also be obtained by applying rf pulses at frequencies
ω0 − 2�q/h̄, ω0 and ω0 + 2�q/h̄ (single-quantum transitions) by using the relations discussed
in the appendix:

X̂ A(θ) = Ŷ12(π)X̂01(θ)X̂23(−θ)Ŷ12(−π),
Ŷ A(θ) = Ŷ12(π)Ŷ01(θ)Ŷ23(−θ)Ŷ12(−π),
Ẑ A(θ) = Ŷ12(π)Ẑ01(θ)Ẑ23(θ)Ŷ12(−π).

(8)

As another example of NMR implementation of single-qubit gate, we analyse the
Hadamard gate, which transforms the computational basis states into the equally weighted
superposition states. This truly quantum gate can be obtained by the following rotations of a
real single qubit:

Ĥ = iX̂(π)Ŷ (π/2) = iŶ (π/2)Ẑ(π). (9)

If the Hadamard gate is applied to the logical qubit A in a quartit, it is described by

Ĥ A = Ĥ ⊗ Î = 1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 , (10)

which transforms a general input state |ψ〉, given by (2), into H
�A|ψ〉 = c0|+, 0〉 + c1|+, 1〉 +

c2|−, 0〉+c3|−, 1〉, where |±〉 ≡ 1√
2
(|0〉±|1〉). This gate can be realized by the pulse sequence

Ĥ A(θ) = iŶ12(π)X̂01(π)Ŷ01(π/2)X̂23(−π)Ŷ23(−π/2)Ŷ12(−π) (11)

or, equivalently, by

Ĥ A(θ) = iŶ12(π)Ŷ01(π/2)Ẑ01(π)Ŷ23(−π/2)Ẑ23(π)Ŷ12(−π). (12)

If the Hadamard gate is applied to the logical qubit B in a quartit, the transformation is
described by

Ĥ B = Î ⊗ Ĥ = 1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 . (13)

The action of Ĥ B on |ψ〉 is readily found in analogy to Ĥ A|ψ〉. Hadamard gate Ĥ B can
be realized by pulses

Ĥ B(θ) = iX̂01(π)Ŷ01(π/2)X̂23(π)Ŷ23(π/2), (14)

or, equivalently, by

Ĥ B(θ) = iŶ01(π/2)Ẑ01(π)Ŷ23(π/2)Ẑ23(π). (15)

From the above discussion, it is clear that we will be able to realize any qubit rotation using
our NMR devices. However, the principal discussions above ignore the free evolution of the
coherent system during the finite pulse duration and the time lag between the pulses. We
should compensate for these free evolutions in the pulse sequences for future experimental
demonstrations. As already discussed, the pulses can be applied simultaneously if the
corresponding operators commute. These features may be helpful in implementing quantum
operations based on semiconductor NMR devices.
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3.3. Two logical qubit gates in a quartit

In addition to single-qubit rotations, it is important to describe NMR implementations of CNOT
gates for logical qubits in a quartit. The CNOT (XOR) gates are defined as

ÛCNOT1 =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , ÛCNOT2 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 (16)

with the control qubit A (B) and target qubit B (A) for ÛCNOT1(ÛCNOT2). The CNOT1 gate
transforms the initial/input state |ψ〉 into c0|0〉 + c1|1〉 + c3|2〉 + c2|3〉, while CNOT2 gate
changes |ψ〉 into c0|0〉 + c3|1〉 + c2|2〉 + c1|3〉. The following sequences of pulses implement
CNOT-like (the so-called Pound–Overhauser CNOT) gates:

Û ′
CNOT1 = Ŷ23(π), Û ′

CNOT2 = Ŷ13(π), (17)

which actually differ from standard CNOT gates by the extra minus in one of the off-
diagonal terms in (16), which can be corrected (if necessary) by NOT and controlled Z gates.
Alternatively, CNOT-like operations can also be realized by

Û ′′
CNOT1 = X̂23(π), Û ′′

CNOT2 = X̂13(π). (18)

As shown, it is easier to realize ÛCNOT gates rather than single logical-qubit rotations in a
quartit system, which is opposite to the gates for the real two-qubit systems. Thus, by virtue
of the theorem of Barenco et al [45], it is seen that arbitrary two- (logical-) qubit quantum
algorithms can in principle be realized in a spin-3/2 NMR system by combining the described
single-logical-qubit rotations and CNOT gates. Note that some other gates can be realized more
simply than the described universal gates in our NMR scheme. As an example, let us analyse
the SWAP gate, which transforms the initial state |ψ〉 into c0|0〉 + c2|1〉 + c1|2〉 + c3|3〉. The
SWAP gate can be obtained by combing CNOT gates as follows:

ÛSWAP = ÛCNOT1ÛCNOT2ÛCNOT1. (19)

Nevertheless, SWAP-like operations can be realized just by a single pulse as follows:

Û ′
SWAP = Ŷ12(π), or Û ′′

SWAP = X̂12(π). (20)

This differs from the exact SWAP only by the extra minus in one of the off-diagonal terms,
which can again be corrected by NOT and controlled Z gates.

Finally, we note that if a system has no quadrupole moment then the three transitions
are degenerate from each other. Such degeneracy would disable NMR quantum information
processing within the scheme discussed above.

3.4. Quantum state tomography based on Mz-detection

Readout is particularly simple if the system is in one of the effective pure states |k〉 (k =
0, 1, 2, 3). However, in general, it is necessary to apply a method known as quantum state
tomography (QST), which enables a complete reconstruction of a given density matrix ρ̂ after
quantum operations. To reconstruct a density matrix ρ̂ for a quartit or two qubits, we need
to determine 15 real parameters. (The 16th element can be found from the normalization
condition.) However, a single NMR readout enables determination of some elements of a
given density matrix ρ̂ only. We have applied a novel QST scheme based on Mz -detection
of a spin-3/2 system, which enables the determination of only diagonal elements since
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Figure 5. Pulsed NMR spectra of 69Ga corresponding to the initial state (a) and four effective pure
states (b)–(e). The spectrum was obtained by applying π pulses with 120 µs duration after each
initialization process. The population of the nuclear spins in the four levels is schematically shown
in the insets. All spectra were taken at 6 T and 150 mK, and the observed quadrupolar splitting was
15 kHz.

Mz ∝ tr(ρ̂ Îz), where Îz = diag([3/2, 1/2,−1/2,−3/2]) is the total angular momentum
operator for I = 3/2. The remaining matrix elements can be obtained by rotating the
original density matrix ρ̂ through properly chosen rotational operations R̂k which change ρ̂ as
follows: ρ̂(k) = R̂k ρ̂ R̂+

k . These operations are performed before NMR readout measurements.
Thus, a given density matrix can be reconstructed by transforming ρ̂ through various rotations
R̂k in such a way that all elements go over into measurable ones in a given detection
scheme.

Quantum state tomography [46, 47] and quantum process tomography [48, 49] were first
developed for spin-1/2 systems and later applied to spin-3/2 systems [35, 37, 50]. It should
be stressed that, to our knowledge, all known QST methods are based on Mxy quadrature
detection. As already explained, we directly detect Mz in our system, as the resistance value is
proportional to Mz . This is completely different from conventional NMR experiments, which
detect rotation in the XY plane Mxy .

Here, we consider how to read out the results from an NMR spectrum like that in
figure 5(a). The NMR spectrum in this experiment was defined as�Rxx measured as a function
of rf frequency at the pulse duration of tpπ , which approximately corresponds to the π -pulse of
the single-quantum coherent oscillations. This is equivalent to measuring the NMR spectrum
at tp ≈ 0.06 ms in figure 3(b). If we can neglect dephasing (usually tpπ 
 T2 is satisfied) and
a small difference in oscillation frequency between �R1 (=�R3) and �R2 [41], three peaks in
the NMR spectrum approximately represent the subtracted population densities, i.e., ρ11 − ρ00,
ρ22 − ρ11 and ρ33 − ρ22, where ρmn ≡ 〈m|ρ̂|n〉 and ρii correspond to the density of i spin
states and i = 0, 1, 2 and 3 corresponds to |00〉, |01〉, |10〉 and |11〉 of the equivalent two-qubit
system.
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Taking into account this readout scheme, we propose the use of the following natural set
of 12 rotations for the Mz -based tomography of spins 3/2:

X̂01(π/2), Ŷ01(π/2), X̂12(π/2),

Ŷ12(π/2), X̂23(π/2), Ŷ23(π/2),

X̂02(π/2), Ŷ02(π/2), X̂13(π/2),

Ŷ13(π/2), X̂03(π/2), Ŷ03(π/2).

(21)

The choice of these rotations can be understood as follows: when we apply a Ŷ01(π/2)
pulse after a certain quantum operation, we will get a diagonal component containing ρ01 and
ρ10. In our NMR spectrum based on Mz detection, one of the three signals is proportional to
Re(ρ01) + Re(ρ10). Because ρi j = ρ∗

j i , we can get Re(ρ01) = Re(ρ10). Similarly, Ŷ12(π/2),

Ŷ23(π/2), Ŷ02(π/2), Ŷ13(π/2) and Ŷ03(π/2) give us Re(ρ12) = Re(ρ21), Re(ρ23) = Re(ρ32),
Re(ρ02) = Re(ρ20), Re(ρ13) = Re(ρ31) and Re(ρ03) = Re(ρ30). Imaginary parts are also
estimated by applying a X̂ i j(π/2) pulse and using Im(ρi j ) = −Im(ρ j i). Although the method
requires 12 measurements as well as two- and three-photon operations, the scheme seems
simple and easy to understand. This method can essentially be optimized by reducing the
number of required rotations to six while increasing the reconstruction sensitivity as well as its
relative error. The details of this novel tomography scheme are beyond the scope of this paper
and will be discussed elsewhere [51]. Moreover, the three- and two-photon operations can be
replaced by solely single-photon operations, as we show in the appendix.

4. Preparation of effective pure states

The initialization of an NMR quantum computer is based on the preparation of effective
pure (pseudopure) states for the nucleus ensemble. In the effective pure states, the deviation
density matrix can be treated as if it is in a pure state and any unitary evolution, i.e. quantum
computation, can be applied to that pure state.

In conventional NMR quantum information experiments, the effective pure states are
prepared from thermal equilibrium states. A review of these methods applied to spin-1/2
systems can be found in [14]. A generalized method for spin-3/2 liquid-state systems was first
used experimentally in [29]. Three approaches have been developed for preparation of effective
pure states: logical labelling using ancillary qubits as labels [11], spatial averaging [52],
and temporal averaging [53]. However, the effective pure states starting from the thermal
equilibrium situation have the available pure state population of only Nh̄ω0/(4kBT ), where
kB is Boltzmann’s constant, T the temperature, and N the total number of nuclear spins. The
h̄ω0 is of the order of 0.1 µeV and usually much smaller than 4kBT .

The situation is different in our NMR semiconductor devices. We can use dynamic
nuclear spin polarization induced by the current flow and prepare the effective pure states
from this strongly polarized situation, which makes a large population available as the
pure state. Here, we used the 69Ga NMR spectrum to estimate the population among
four spin states. As already discussed, the NMR spectrum in this experiment was defined
as �Rxx measured as a function of radio frequency at the pulse duration of tpπ , which
approximately corresponds to the π -pulse of the single-quantum coherent oscillations. The
amplitudes of three NMR peaks roughly represent the subtracted density distributions, i.e.,
ρ11 − ρ00, ρ22 − ρ11 and ρ33 − ρ22. Figure 5(a) shows the NMR spectrum, i.e. the
subtracted density distribution, just after dynamical polarization by the current flow. As
schematically shown in the inset, the population becomes larger for the higher spin states,
reflecting dynamical polarization. However, this situation is far from the effective pure states.
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We therefore describe how to create the effective pure states by applying appropriate pulse
sequences.

Although the degeneracy of electron spin states is very important for inducing nuclear spin
and electron spin interaction as already discussed, the interaction occurs in a rather wide range
around the degeneracy point [40] and how the population changes between four spin states
strongly depends on the conditions for the dynamic polarization [54]. Here, we selected the
condition where the population increases linearly with spin states. In other words, the amplitude
is almost constant among the three NMR peaks like in the spectrum shown in figure 5(a).
Starting from such an initial state, we can create effective pure states for |00〉, |01〉, |10〉, and
|11〉 as shown in figures 5(b)–(e), using frequency selective pulse sequences. In preparing the
|00〉 (−|00〉 in the strict definition) effective pure state for example, we apply a π pulse with
frequency of ω0 [we denote as X̂12(π)] to interchange the population of levels 1 and 2 and
apply a π/2 pulse with frequency of ω0 + 2�q/h̄ [X̂23(π/2)] to equalize the populations of
levels 2 and 3. If we allow the two-photon transition, the −|00〉 state is prepared by applying
a X̂13(π/2) single pulse. Similarly, the effective pure state |11〉 is obtained by sequentially
applying X̂12(π) and X̂01(π/2) pulses or applying a X̂02(π/2) single pulse. For |10〉 and
|01〉 states, we use pulse sequences containing two-quantum transitions X̂23(π)X̂02(π/2) and
X̂01(π)X̂13(π/2), respectively. We can also generate the effective |01〉, |10〉, and |00〉 pure
states from the effective |11〉 pure state. Namely, after generating the |11〉 state, the other |i j〉
state can be obtained by applying the pulse X̂2i+ j,3(π) which simply switches the populations
between the states |11〉 and |i j〉.

Here, we have shown the simple scheme for forming an effective pure state from the
linearly distributed population. However, it is clear that we can form the effective pure state
from any arbitrary distribution by applying more complicated pulse sequences. Although any
pulse manipulates nuclear spin states coherently, the designed population is maintained up
to T1 longer than 100 s [25]. Therefore, it is possible to form effective pure states without
complicated coherent effects by setting appropriate waiting time T2 < t < T1 during the pulse
sequences.

5. Conclusions

In our pursuit of all-electrical control and detection of nuclear spins in semiconductors, we
have found that the fractional-quantum-Hall regime around ν = 2/3 can be used to control and
detect nuclear spin states by electron–nuclear spin coupling. The degenerate condition between
spin polarized and unpolarized ν = 2/3 states results in pronounced hyperfine interactions. We
have extended these interactions to a nanoscale device, in which a point contact is formed by
using split gates and an antenna gate is integrated for applying electromagnetic radiation to the
point-contact region. By passing an electrical current through the structure, nuclear spins can be
selectively polarized in the point-contact region, where current density is high. Furthermore,
the resistance of the point contact shows changes that are approximately proportional to the
vertical magnetization originating from the nuclear spins. Accordingly, if an alternating current
is driven through the antenna gate to apply electromagnetic radiation at the NMR frequency,
coherent nuclear spin oscillations occur only at the desired transition, resulting in oscillations of
the nuclear spin magnetization, which in turn is detected by the resistance of the point contact.
Strikingly clear coherent oscillations are observed, reflecting all possible transitions among the
four nuclear spin states of each nuclide (namely, 69Ga, 71Ga and 75As). The arbitrary control of
superposition among four spin levels equals two-qubit operation. We have theoretically shown
how to make the two fictitious qubits from a four-level system and how to design the operation
pulses for one- and two-qubit operations. A state tomography scheme is also proposed for the
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novel Mz detection realized in our device. As the starting point of the quantum operation, we
have demonstrated the formation of the effective pure states experimentally. Decoherence is the
most important issue for solid state quantum systems, and we have estimated the decoherence
from the Rabi-type oscillation of our NMR device. We found that As–Ga direct dipole coupling
is a less important factor in determining the decoherence due to the magic angle of the crystal
bonds. The T2 time is extended to values longer than 1.5 ms by the electron decoupling.
Further improvements of T2 will be allowed by using more sophisticated decoupling techniques
like the one in [55]. The discussions in this paper clearly suggest that the exciting features
of nanometre-scale NMR devices make them plausible candidates for the future quantum
information processing based on solid-state systems.
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Appendix A. Quantum operations without two- and three-photon transitions

Here, we suggest a way to replace three- and two-photon operations by single-photon ones,
which, in particular, can solve the problem related to the degeneracy of single- and three-photon
transitions at h̄ω0.

As already explained, we can observe (i) two-photon (i.e., double-quantum) transitions
between levels |0〉 and |2〉 at frequency ω0 −�q h̄ and between levels |1〉 and |3〉 at frequency
ω0 + �q/h̄, as well as a (ii) three-photon (triple quantum) transition at frequency ω0 between
levels |0〉 and |3〉. In the latter case, there is a problem of degeneracy with the transition
between |1〉 and |2〉, which implies that the pulse at frequency ω0 causes the transition not
only between levels |0〉 and |3〉 but also an undesirable transition between levels |1〉 and |2〉.
It is possible to select the oscillating field strength B1 that satisfies some angle rotation for
the transition between |0〉 and |3〉 but multiple of 2π for the transition between |1〉 and |2〉.
Therefore, it is possible to realize pure |0〉–|3〉 operation without |1〉–|2〉 rotation. However,
the current amplitude necessary for this operation may be high and the operation is not realistic
from the viewpoint of heating. The simplest way to avoid such degeneracy is just to replace
rotations requiring three-photon transitions by combinations of rotations based only on (i)
single- and two-photon transitions or (ii) just single-photon transitions. We find that the
following replacements can be used:

X̂03(θ) = Ŷ13(π)X̂01(θ)Ŷ13(−π) = Ŷ02(π)X̂23(−θ)Ŷ02(−π)
= Ŷ01(π)X̂13(−θ)Ŷ01(−π) = Ŷ23(π)X̂02(θ)Ŷ23(−π)
= Ŷ01(π)Ŷ23(π)X̂12(−θ)Ŷ23(−π)Ŷ01(−π) = · · · ,

where θ stands for arbitrary angle. Thus, we do not need to use any strong pulses to make the
transition |0〉–|3〉, which can erroneously induce the transition |1〉–|2〉. Moreover, if one prefers
to use only rotations based on single-photon transitions rather than both single- and two-photon
transitions, then we can replace the latter as follows:

X̂13(θ) = Ŷ23(π)X̂12(θ)Ŷ23(−π) = Ŷ12(π)X̂23(−θ)Ŷ12(−π),
Ŷ13(θ) = Ŷ23(π)Ŷ12(θ)Ŷ23(−π) = Ŷ12(π)Ŷ23(−θ)Ŷ12(−π),
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X̂02(θ) = Ŷ12(π)X̂01(θ)Ŷ12(−π) = Ŷ01(π)X̂12(−θ)Ŷ01(−π),
Ŷ02(θ) = Ŷ12(π)Ŷ01(θ)Ŷ12(−π) = Ŷ01(π)Ŷ12(−θ)Ŷ01(−π).

One may raise an objection about a reverse process, namely, whether it is possible to
induce selectively the transition |1〉–|2〉 without causing the transition |0〉–|3〉. The rotation
frequency is proportional to the first Bessel function of the oscillation field B1 for the coherent
rotation between |1〉 and |2〉. In contrast, it is proportional to the third Bessel function for that
between |0〉 and |3〉. Therefore, the transition |0〉–|3〉 becomes negligible if the applied pulse
(at frequency ω0) is weak, although this scheme is limited by the finite T2 in our system.
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